Split up to different source files, entry-point for back propagation

This commit is contained in:
Michael Mandl 2015-03-23 21:58:30 +01:00
parent c8e08193f1
commit e3a804242c
8 changed files with 230 additions and 149 deletions

52
Layer.cpp Normal file
View file

@ -0,0 +1,52 @@
#include "Layer.h"
Layer::Layer(unsigned int numNeurons)
{
for (unsigned int i = 0; i < numNeurons; ++i)
{
push_back(Neuron());
}
}
void Layer::setOutputValues(const std::vector<double> & outputValues)
{
if (size() != outputValues.size())
{
throw std::exception("The number of output values has to match the layer size");
}
auto valueIt = outputValues.begin();
for (Neuron &neuron : *this)
{
neuron.setOutputValue(*valueIt++);
}
}
void Layer::feedForward(const Layer &inputLayer)
{
int neuronNumber = 0;
for (Neuron &neuron : *this)
{
neuron.feedForward(inputLayer.getWeightedSum(neuronNumber));
}
}
double Layer::getWeightedSum(int outputNeuron) const
{
double sum = 0.0;
for (const Neuron &neuron : *this)
{
sum += neuron.getWeightedOutputValue(outputNeuron);
}
return sum;
}
void Layer::connectTo(const Layer & nextLayer)
{
for (Neuron &neuron : *this)
{
neuron.createOutputWeights(nextLayer.size());
}
}

16
Layer.h Normal file
View file

@ -0,0 +1,16 @@
#pragma once
#include <vector>
#include "Neuron.h"
class Layer : public std::vector < Neuron >
{
public:
Layer(unsigned int numNeurons);
void setOutputValues(const std::vector<double> & outputValues);
void feedForward(const Layer &inputLayer);
double getWeightedSum(int outputNeuron) const;
void connectTo(const Layer & nextLayer);
};

75
Net.cpp Normal file
View file

@ -0,0 +1,75 @@
#include "Net.h"
Net::Net(std::initializer_list<unsigned int> layerSizes)
{
if (layerSizes.size() < 3)
{
throw std::exception("A net needs at least 3 layers");
}
for (unsigned int numNeurons : layerSizes)
{
push_back(Layer(numNeurons));
}
for (auto layerIt = begin(); layerIt != end() - 1; ++layerIt)
{
Layer &currentLayer = *layerIt;
const Layer &nextLayer = *(layerIt + 1);
currentLayer.connectTo(nextLayer);
}
}
void Net::feedForward(const std::vector<double> &inputValues)
{
Layer &inputLayer = front();
if (inputLayer.size() != inputValues.size())
{
throw std::exception("The number of input values has to match the input layer size");
}
inputLayer.setOutputValues(inputValues);
for (auto layerIt = begin(); layerIt != end() - 1; ++layerIt)
{
const Layer &currentLayer = *layerIt;
Layer &nextLayer = *(layerIt + 1);
nextLayer.feedForward(currentLayer);
}
}
std::vector<double> Net::getResult()
{
std::vector<double> result;
const Layer &outputLayer = back();
for (const Neuron &neuron : outputLayer)
{
result.push_back(neuron.getOutputValue());
}
return result;
}
void Net::backProp(const std::vector<double> &targetValues)
{
const Layer &outputLayer = back();
if (targetValues.size() != outputLayer.size())
{
throw std::exception("The number of target values has to match the output layer size");
}
std::vector<double> resultValues = getResult();
double rmsError = 0.0;
for (unsigned int i = 0; i < resultValues.size(); ++i)
{
double delta = resultValues[i] - targetValues[i];
rmsError += delta * delta;
}
rmsError = sqrt(rmsError / resultValues.size());
}

154
Net.h
View file

@ -2,158 +2,14 @@
#include <vector> #include <vector>
class Neuron #include "Layer.h"
{
private:
double outputValue;
std::vector<double> outputWeights;
public:
void setOutputValue(double value)
{
outputValue = value;
}
static double transferFunction(double inputValue)
{
return std::tanh(inputValue);
}
void feedForward(double inputValue)
{
outputValue = Neuron::transferFunction(inputValue);
}
double getWeightedOutputValue(int outputNeuron) const
{
return outputValue * outputWeights[outputNeuron];
}
void createOutputWeights(unsigned int number)
{
outputWeights.clear();
for (unsigned int i = 0; i < number; ++i)
{
outputWeights.push_back(std::rand() / (double)RAND_MAX);
}
}
double getOutputValue() const
{
return outputValue;
}
};
class Layer : public std::vector < Neuron >
{
public:
Layer(unsigned int numNeurons)
{
for (unsigned int i = 0; i < numNeurons; ++i)
{
push_back(Neuron());
}
}
void setOutputValues(const std::vector<double> & outputValues)
{
if (size() != outputValues.size())
{
throw std::exception("The number of output values has to match the layer size");
}
auto valueIt = outputValues.begin();
for (Neuron &neuron : *this)
{
neuron.setOutputValue(*valueIt++);
}
}
void feedForward(const Layer &inputLayer)
{
int neuronNumber = 0;
for (Neuron &neuron : *this)
{
neuron.feedForward(inputLayer.getWeightedSum(neuronNumber));
}
}
double getWeightedSum(int outputNeuron) const
{
double sum = 0.0;
for (const Neuron &neuron : *this)
{
sum += neuron.getWeightedOutputValue(outputNeuron);
}
return sum;
}
void connectTo(const Layer & nextLayer)
{
for (Neuron &neuron : *this)
{
neuron.createOutputWeights(nextLayer.size());
}
}
};
class Net : public std::vector < Layer > class Net : public std::vector < Layer >
{ {
public: public:
Net(std::initializer_list<unsigned int> layerSizes) Net(std::initializer_list<unsigned int> layerSizes);
{
if (layerSizes.size() < 3)
{
throw std::exception("A net needs at least 3 layers");
}
for (unsigned int numNeurons : layerSizes) void feedForward(const std::vector<double> &inputValues);
{ std::vector<double> getResult();
push_back(Layer(numNeurons)); void backProp(const std::vector<double> &targetValues);
}
for (auto layerIt = begin(); layerIt != end() - 1; ++layerIt)
{
Layer &currentLayer = *layerIt;
const Layer &nextLayer = *(layerIt + 1);
currentLayer.connectTo(nextLayer);
}
}
void feedForward(const std::vector<double> &inputValues)
{
Layer &inputLayer = front();
if (inputLayer.size() != inputValues.size())
{
throw std::exception("The number of input values has to match the input layer size");
}
inputLayer.setOutputValues(inputValues);
for (auto layerIt = begin(); layerIt != end() - 1; ++layerIt)
{
const Layer &currentLayer = *layerIt;
Layer &nextLayer = *(layerIt + 1);
nextLayer.feedForward(currentLayer);
}
}
std::vector<double> getResult()
{
std::vector<double> result;
const Layer &outputLayer = back();
for (const Neuron &neuron : outputLayer)
{
result.push_back(neuron.getOutputValue());
}
return result;
}
}; };

View file

@ -78,10 +78,15 @@
</Link> </Link>
</ItemDefinitionGroup> </ItemDefinitionGroup>
<ItemGroup> <ItemGroup>
<ClCompile Include="Layer.cpp" />
<ClCompile Include="Net.cpp" />
<ClCompile Include="Neuro.cpp" /> <ClCompile Include="Neuro.cpp" />
<ClCompile Include="Neuron.cpp" />
</ItemGroup> </ItemGroup>
<ItemGroup> <ItemGroup>
<ClInclude Include="Layer.h" />
<ClInclude Include="Net.h" /> <ClInclude Include="Net.h" />
<ClInclude Include="Neuron.h" />
</ItemGroup> </ItemGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" /> <Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
<ImportGroup Label="ExtensionTargets"> <ImportGroup Label="ExtensionTargets">

View file

@ -18,10 +18,25 @@
<ClCompile Include="Neuro.cpp"> <ClCompile Include="Neuro.cpp">
<Filter>Source Files</Filter> <Filter>Source Files</Filter>
</ClCompile> </ClCompile>
<ClCompile Include="Net.cpp">
<Filter>Source Files</Filter>
</ClCompile>
<ClCompile Include="Layer.cpp">
<Filter>Source Files</Filter>
</ClCompile>
<ClCompile Include="Neuron.cpp">
<Filter>Source Files</Filter>
</ClCompile>
</ItemGroup> </ItemGroup>
<ItemGroup> <ItemGroup>
<ClInclude Include="Net.h"> <ClInclude Include="Net.h">
<Filter>Header Files</Filter> <Filter>Header Files</Filter>
</ClInclude> </ClInclude>
<ClInclude Include="Layer.h">
<Filter>Header Files</Filter>
</ClInclude>
<ClInclude Include="Neuron.h">
<Filter>Header Files</Filter>
</ClInclude>
</ItemGroup> </ItemGroup>
</Project> </Project>

43
Neuron.cpp Normal file
View file

@ -0,0 +1,43 @@
#pragma once
#include "Neuron.h"
void Neuron::setOutputValue(double value)
{
outputValue = value;
}
double Neuron::transferFunction(double inputValue)
{
return std::tanh(inputValue);
}
double Neuron::transferFunctionDerivative(double inputValue)
{
return 1.0 - (inputValue * inputValue);
}
void Neuron::feedForward(double inputValue)
{
outputValue = Neuron::transferFunction(inputValue);
}
double Neuron::getWeightedOutputValue(int outputNeuron) const
{
return outputValue * outputWeights[outputNeuron];
}
void Neuron::createOutputWeights(unsigned int number)
{
outputWeights.clear();
for (unsigned int i = 0; i < number; ++i)
{
outputWeights.push_back(std::rand() / (double)RAND_MAX);
}
}
double Neuron::getOutputValue() const
{
return outputValue;
}

19
Neuron.h Normal file
View file

@ -0,0 +1,19 @@
#pragma once
#include <vector>
class Neuron
{
private:
double outputValue;
std::vector<double> outputWeights;
public:
void setOutputValue(double value);
static double transferFunction(double inputValue);
static double transferFunctionDerivative(double inputValue);
void feedForward(double inputValue);
double getWeightedOutputValue(int outputNeuron) const;
void createOutputWeights(unsigned int number);
double getOutputValue() const;
};