Backprop seems to be working, yay
This commit is contained in:
parent
a79abb5db1
commit
6ef1f9657c
4 changed files with 32 additions and 8 deletions
22
Layer.cpp
22
Layer.cpp
|
@ -53,9 +53,9 @@ void Layer::connectTo(const Layer & nextLayer)
|
||||||
|
|
||||||
void Layer::updateInputWeights(Layer & prevLayer)
|
void Layer::updateInputWeights(Layer & prevLayer)
|
||||||
{
|
{
|
||||||
static const double trainingRate = 0.8;
|
static const double trainingRate = 0.5;
|
||||||
|
|
||||||
for (size_t currentLayerIndex = 0; currentLayerIndex < size() - 1; ++currentLayerIndex)
|
for (size_t currentLayerIndex = 0; currentLayerIndex < sizeWithoutBiasNeuron(); ++currentLayerIndex)
|
||||||
{
|
{
|
||||||
Neuron &targetNeuron = at(currentLayerIndex);
|
Neuron &targetNeuron = at(currentLayerIndex);
|
||||||
|
|
||||||
|
@ -69,3 +69,21 @@ void Layer::updateInputWeights(Layer & prevLayer)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void Layer::addBiasNeuron()
|
||||||
|
{
|
||||||
|
push_back(Neuron(1.0));
|
||||||
|
hasBiasNeuron = true;
|
||||||
|
}
|
||||||
|
|
||||||
|
size_t Layer::sizeWithoutBiasNeuron() const
|
||||||
|
{
|
||||||
|
if (hasBiasNeuron)
|
||||||
|
{
|
||||||
|
return size() - 1;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
return size();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
7
Layer.h
7
Layer.h
|
@ -6,6 +6,9 @@
|
||||||
|
|
||||||
class Layer : public std::vector < Neuron >
|
class Layer : public std::vector < Neuron >
|
||||||
{
|
{
|
||||||
|
private:
|
||||||
|
bool hasBiasNeuron = false;
|
||||||
|
|
||||||
public:
|
public:
|
||||||
Layer(size_t numNeurons);
|
Layer(size_t numNeurons);
|
||||||
|
|
||||||
|
@ -15,4 +18,8 @@ public:
|
||||||
void connectTo(const Layer & nextLayer);
|
void connectTo(const Layer & nextLayer);
|
||||||
|
|
||||||
void updateInputWeights(Layer &prevLayer);
|
void updateInputWeights(Layer &prevLayer);
|
||||||
|
|
||||||
|
void addBiasNeuron();
|
||||||
|
|
||||||
|
size_t sizeWithoutBiasNeuron() const;
|
||||||
};
|
};
|
||||||
|
|
3
Net.cpp
3
Net.cpp
|
@ -17,8 +17,7 @@ Net::Net(std::initializer_list<size_t> layerSizes)
|
||||||
Layer ¤tLayer = *layerIt;
|
Layer ¤tLayer = *layerIt;
|
||||||
const Layer &nextLayer = *(layerIt + 1);
|
const Layer &nextLayer = *(layerIt + 1);
|
||||||
|
|
||||||
Neuron biasNeuron(1.0);
|
currentLayer.addBiasNeuron();
|
||||||
currentLayer.push_back(biasNeuron);
|
|
||||||
|
|
||||||
currentLayer.connectTo(nextLayer);
|
currentLayer.connectTo(nextLayer);
|
||||||
}
|
}
|
||||||
|
|
|
@ -9,12 +9,12 @@ int main()
|
||||||
{
|
{
|
||||||
std::cout << "Neuro running" << std::endl;
|
std::cout << "Neuro running" << std::endl;
|
||||||
|
|
||||||
std::vector<double> inputValues = { 1.0, 4.0, 5.0 };
|
std::vector<double> inputValues = { 0.1, 0.2, 0.8 };
|
||||||
std::vector<double> targetValues = { 3.0 };
|
std::vector<double> targetValues = { 0.8 };
|
||||||
|
|
||||||
Net myNet({ inputValues.size(), 4, targetValues.size() });
|
Net myNet({ inputValues.size(), 4, targetValues.size() });
|
||||||
|
|
||||||
for (int i = 0; i < 20; ++i)
|
for (int i = 0; i < 200; ++i)
|
||||||
{
|
{
|
||||||
myNet.feedForward(inputValues);
|
myNet.feedForward(inputValues);
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue