First implementation of weight updates. Very slow rate of change in the output value.

main
mandlm 2015-10-17 22:05:27 +02:00
parent de06daaad3
commit a79abb5db1
5 changed files with 43 additions and 12 deletions

View File

@ -51,6 +51,21 @@ void Layer::connectTo(const Layer & nextLayer)
}
}
void Layer::updateInputWeights(const Layer & prevLayer)
void Layer::updateInputWeights(Layer & prevLayer)
{
static const double trainingRate = 0.8;
for (size_t currentLayerIndex = 0; currentLayerIndex < size() - 1; ++currentLayerIndex)
{
Neuron &targetNeuron = at(currentLayerIndex);
for (size_t prevLayerIndex = 0; prevLayerIndex < prevLayer.size(); ++prevLayerIndex)
{
Neuron &sourceNeuron = prevLayer.at(prevLayerIndex);
sourceNeuron.setOutputWeight(currentLayerIndex,
sourceNeuron.getOutputWeight(currentLayerIndex) +
sourceNeuron.getOutputValue() * targetNeuron.getGradient() * trainingRate);
}
}
}

View File

@ -14,5 +14,5 @@ public:
double getWeightedSum(int outputNeuron) const;
void connectTo(const Layer & nextLayer);
void updateInputWeights(const Layer &prevLayer);
void updateInputWeights(Layer &prevLayer);
};

View File

@ -14,18 +14,21 @@ int main()
Net myNet({ inputValues.size(), 4, targetValues.size() });
myNet.feedForward(inputValues);
std::vector<double> outputValues = myNet.getOutput();
std::cout << "Result: ";
for (double &value : outputValues)
for (int i = 0; i < 20; ++i)
{
std::cout << value << " ";
}
std::cout << std::endl;
myNet.feedForward(inputValues);
myNet.backProp(targetValues);
std::vector<double> outputValues = myNet.getOutput();
std::cout << "Result: ";
for (double &value : outputValues)
{
std::cout << value << " ";
}
std::cout << std::endl;
myNet.backProp(targetValues);
}
}
catch (std::exception &ex)
{

View File

@ -84,3 +84,13 @@ double Neuron::getGradient() const
return gradient;
}
double Neuron::getOutputWeight(size_t index) const
{
return outputWeights.at(index);
}
void Neuron::setOutputWeight(size_t index, double value)
{
outputWeights.at(index) = value;
}

View File

@ -25,6 +25,9 @@ public:
double getGradient() const;
double getOutputWeight(size_t index) const;
void setOutputWeight(size_t index, double value);
private:
static double transferFunction(double inputValue);
static double transferFunctionDerivative(double inputValue);