Backprop seems to be working, yay
parent
a79abb5db1
commit
6ef1f9657c
24
Layer.cpp
24
Layer.cpp
|
@ -53,19 +53,37 @@ void Layer::connectTo(const Layer & nextLayer)
|
|||
|
||||
void Layer::updateInputWeights(Layer & prevLayer)
|
||||
{
|
||||
static const double trainingRate = 0.8;
|
||||
static const double trainingRate = 0.5;
|
||||
|
||||
for (size_t currentLayerIndex = 0; currentLayerIndex < size() - 1; ++currentLayerIndex)
|
||||
for (size_t currentLayerIndex = 0; currentLayerIndex < sizeWithoutBiasNeuron(); ++currentLayerIndex)
|
||||
{
|
||||
Neuron &targetNeuron = at(currentLayerIndex);
|
||||
|
||||
for (size_t prevLayerIndex = 0; prevLayerIndex < prevLayer.size(); ++prevLayerIndex)
|
||||
{
|
||||
Neuron &sourceNeuron = prevLayer.at(prevLayerIndex);
|
||||
|
||||
|
||||
sourceNeuron.setOutputWeight(currentLayerIndex,
|
||||
sourceNeuron.getOutputWeight(currentLayerIndex) +
|
||||
sourceNeuron.getOutputValue() * targetNeuron.getGradient() * trainingRate);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Layer::addBiasNeuron()
|
||||
{
|
||||
push_back(Neuron(1.0));
|
||||
hasBiasNeuron = true;
|
||||
}
|
||||
|
||||
size_t Layer::sizeWithoutBiasNeuron() const
|
||||
{
|
||||
if (hasBiasNeuron)
|
||||
{
|
||||
return size() - 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
return size();
|
||||
}
|
||||
}
|
||||
|
|
7
Layer.h
7
Layer.h
|
@ -6,6 +6,9 @@
|
|||
|
||||
class Layer : public std::vector < Neuron >
|
||||
{
|
||||
private:
|
||||
bool hasBiasNeuron = false;
|
||||
|
||||
public:
|
||||
Layer(size_t numNeurons);
|
||||
|
||||
|
@ -15,4 +18,8 @@ public:
|
|||
void connectTo(const Layer & nextLayer);
|
||||
|
||||
void updateInputWeights(Layer &prevLayer);
|
||||
|
||||
void addBiasNeuron();
|
||||
|
||||
size_t sizeWithoutBiasNeuron() const;
|
||||
};
|
||||
|
|
3
Net.cpp
3
Net.cpp
|
@ -17,8 +17,7 @@ Net::Net(std::initializer_list<size_t> layerSizes)
|
|||
Layer ¤tLayer = *layerIt;
|
||||
const Layer &nextLayer = *(layerIt + 1);
|
||||
|
||||
Neuron biasNeuron(1.0);
|
||||
currentLayer.push_back(biasNeuron);
|
||||
currentLayer.addBiasNeuron();
|
||||
|
||||
currentLayer.connectTo(nextLayer);
|
||||
}
|
||||
|
|
|
@ -9,12 +9,12 @@ int main()
|
|||
{
|
||||
std::cout << "Neuro running" << std::endl;
|
||||
|
||||
std::vector<double> inputValues = { 1.0, 4.0, 5.0 };
|
||||
std::vector<double> targetValues = { 3.0 };
|
||||
std::vector<double> inputValues = { 0.1, 0.2, 0.8 };
|
||||
std::vector<double> targetValues = { 0.8 };
|
||||
|
||||
Net myNet({ inputValues.size(), 4, targetValues.size() });
|
||||
|
||||
for (int i = 0; i < 20; ++i)
|
||||
for (int i = 0; i < 200; ++i)
|
||||
{
|
||||
myNet.feedForward(inputValues);
|
||||
|
||||
|
|
Loading…
Reference in New Issue