Implemented dynamic learning
parent
6ef1f9657c
commit
3d30346f2d
|
@ -53,7 +53,7 @@ void Layer::connectTo(const Layer & nextLayer)
|
|||
|
||||
void Layer::updateInputWeights(Layer & prevLayer)
|
||||
{
|
||||
static const double trainingRate = 0.5;
|
||||
static const double trainingRate = 0.2;
|
||||
|
||||
for (size_t currentLayerIndex = 0; currentLayerIndex < sizeWithoutBiasNeuron(); ++currentLayerIndex)
|
||||
{
|
||||
|
|
4
Net.cpp
4
Net.cpp
|
@ -2,9 +2,9 @@
|
|||
|
||||
Net::Net(std::initializer_list<size_t> layerSizes)
|
||||
{
|
||||
if (layerSizes.size() < 3)
|
||||
if (layerSizes.size() < 2)
|
||||
{
|
||||
throw std::exception("A net needs at least 3 layers");
|
||||
throw std::exception("A net needs at least 2 layers");
|
||||
}
|
||||
|
||||
for (size_t numNeurons : layerSizes)
|
||||
|
|
25
Neuro.cpp
25
Neuro.cpp
|
@ -9,22 +9,27 @@ int main()
|
|||
{
|
||||
std::cout << "Neuro running" << std::endl;
|
||||
|
||||
std::vector<double> inputValues = { 0.1, 0.2, 0.8 };
|
||||
std::vector<double> targetValues = { 0.8 };
|
||||
Net myNet({ 3, 2, 1 });
|
||||
|
||||
Net myNet({ inputValues.size(), 4, targetValues.size() });
|
||||
|
||||
for (int i = 0; i < 200; ++i)
|
||||
for (int i = 0; i < 100000; ++i)
|
||||
{
|
||||
std::vector<double> inputValues =
|
||||
{
|
||||
std::rand() / (double)RAND_MAX,
|
||||
std::rand() / (double)RAND_MAX,
|
||||
std::rand() / (double)RAND_MAX
|
||||
};
|
||||
|
||||
std::vector<double> targetValues = { inputValues[2] };
|
||||
|
||||
myNet.feedForward(inputValues);
|
||||
|
||||
std::vector<double> outputValues = myNet.getOutput();
|
||||
|
||||
std::cout << "Result: ";
|
||||
for (double &value : outputValues)
|
||||
{
|
||||
std::cout << value << " ";
|
||||
}
|
||||
double error = outputValues[0] - targetValues[0];
|
||||
|
||||
std::cout << "Error: ";
|
||||
std::cout << std::abs(error);
|
||||
std::cout << std::endl;
|
||||
|
||||
myNet.backProp(targetValues);
|
||||
|
|
Loading…
Reference in New Issue