Neuro/Neuron.cpp

123 lines
2.1 KiB
C++

#include "Neuron.h"
#include <cmath>
#include <random>
#include "Layer.h"
Neuron::Neuron(double value)
: outputValue(value)
, gradient(0)
{
}
void Neuron::setOutputValue(double value)
{
outputValue = value;
}
double Neuron::transferFunction(double inputValue)
{
return std::tanh(inputValue);
}
double Neuron::transferFunctionDerivative(double inputValue)
{
return 1.0 - (inputValue * inputValue);
}
void Neuron::feedForward(double inputValue)
{
outputValue = transferFunction(inputValue);
}
double Neuron::getWeightedOutputValue(size_t outputNeuron) const
{
if (outputNeuron < outputWeights.size())
{
return outputValue * outputWeights[outputNeuron];
}
return 0.0;
}
void Neuron::createRandomOutputWeights(size_t numberOfWeights)
{
outputWeights.clear();
for (unsigned int i = 0; i < numberOfWeights; ++i)
{
outputWeights.push_back(std::rand() / (double)RAND_MAX);
}
}
void Neuron::createOutputWeights(std::list<double> weights)
{
outputWeights.clear();
for (const double &weight : weights)
{
outputWeights.push_back(weight);
}
}
void Neuron::createOutputWeights(size_t numberOfWeights, double weight)
{
outputWeights.clear();
for (unsigned int i = 0; i < numberOfWeights; ++i)
{
outputWeights.push_back(weight);
}
}
double Neuron::getOutputValue() const
{
return outputValue;
}
void Neuron::calcOutputGradients(double targetValue)
{
double delta = targetValue - outputValue;
gradient = delta * transferFunctionDerivative(outputValue);
}
double Neuron::sumDOW(const Layer & nextLayer) const
{
double sum = 0;
for (size_t i = 0; i < outputWeights.size(); ++i)
{
sum += outputWeights[i] * nextLayer[i].getGradient();
}
return sum;
}
void Neuron::calcHiddenGradients(const Layer &nextLayer)
{
double dow = sumDOW(nextLayer);
gradient = dow * transferFunctionDerivative(outputValue);
}
double Neuron::getGradient() const
{
return gradient;
}
double Neuron::getOutputWeight(size_t index) const
{
return outputWeights.at(index);
}
void Neuron::setOutputWeight(size_t index, double value)
{
outputWeights.at(index) = value;
}
size_t Neuron::getNumOutputWeights() const
{
return outputWeights.size();
}