101 lines
3.2 KiB
C++
101 lines
3.2 KiB
C++
#include "netlearner.h"
|
|
#include "../../Net.h"
|
|
#include "trainingdataloader.h"
|
|
|
|
#include <QElapsedTimer>
|
|
#include <QImage>
|
|
|
|
void NetLearner::run()
|
|
{
|
|
try
|
|
{
|
|
QElapsedTimer timer;
|
|
|
|
emit logMessage("Loading training data...");
|
|
emit progress(0.0);
|
|
|
|
TrainingDataLoader dataLoader;
|
|
dataLoader.addSamples("../NeuroUI/training data/mnist_train0.jpg", 0);
|
|
emit progress(0.1);
|
|
dataLoader.addSamples("../NeuroUI/training data/mnist_train1.jpg", 1);
|
|
emit progress(0.2);
|
|
dataLoader.addSamples("../NeuroUI/training data/mnist_train2.jpg", 2);
|
|
emit progress(0.3);
|
|
dataLoader.addSamples("../NeuroUI/training data/mnist_train3.jpg", 3);
|
|
emit progress(0.4);
|
|
dataLoader.addSamples("../NeuroUI/training data/mnist_train4.jpg", 4);
|
|
emit progress(0.5);
|
|
dataLoader.addSamples("../NeuroUI/training data/mnist_train5.jpg", 5);
|
|
emit progress(0.6);
|
|
dataLoader.addSamples("../NeuroUI/training data/mnist_train6.jpg", 6);
|
|
emit progress(0.7);
|
|
dataLoader.addSamples("../NeuroUI/training data/mnist_train7.jpg", 7);
|
|
emit progress(0.8);
|
|
dataLoader.addSamples("../NeuroUI/training data/mnist_train8.jpg", 8);
|
|
emit progress(0.9);
|
|
dataLoader.addSamples("../NeuroUI/training data/mnist_train9.jpg", 9);
|
|
emit progress(1.0);
|
|
|
|
emit logMessage("done");
|
|
emit progress(0.0);
|
|
|
|
Net digitClassifier({32*32, 16*16, 32, 1});
|
|
|
|
timer.start();
|
|
|
|
size_t numIterations = 10000;
|
|
for (size_t iteration = 0; iteration < numIterations; ++iteration)
|
|
{
|
|
const TrainingDataLoader::Sample &trainingSample = dataLoader.getRandomSample();
|
|
|
|
QImage sampleImage(32, 32, QImage::Format_ARGB32);
|
|
for (unsigned int y = 0; y < 32; ++y)
|
|
{
|
|
for (unsigned int x = 0; x < 32; ++x)
|
|
{
|
|
uchar grayValue = trainingSample.second[x + y * 32] * 255;
|
|
sampleImage.setPixel(x, y, qRgb(grayValue, grayValue, grayValue));
|
|
}
|
|
}
|
|
emit sampleImageLoaded(sampleImage);
|
|
|
|
std::vector<double> targetValues =
|
|
{
|
|
trainingSample.first / 10.0
|
|
};
|
|
|
|
digitClassifier.feedForward(trainingSample.second);
|
|
|
|
std::vector<double> outputValues = digitClassifier.getOutput();
|
|
|
|
double error = outputValues[0] - targetValues[0];
|
|
|
|
QString logString;
|
|
|
|
logString.append("Error: ");
|
|
logString.append(QString::number(std::abs(error)));
|
|
|
|
emit logMessage(logString);
|
|
emit currentNetError(error);
|
|
emit progress((double)iteration / (double)numIterations);
|
|
|
|
digitClassifier.backProp(targetValues);
|
|
}
|
|
|
|
QString timerLogString;
|
|
timerLogString.append("Elapsed time: ");
|
|
timerLogString.append(QString::number(timer.elapsed() / 1000.0));
|
|
timerLogString.append(" seconds");
|
|
|
|
emit logMessage(timerLogString);
|
|
|
|
digitClassifier.save("DigitClassifier.nnet");
|
|
}
|
|
catch (std::exception &ex)
|
|
{
|
|
QString logString("Error: ");
|
|
logString.append(ex.what());
|
|
emit logMessage(logString);
|
|
}
|
|
}
|